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250 DOC. 10 COMMENTS ON P. HERTZ’S PAPERS

" Doc. 10

Comments on P. Hertz’s Papers:
“On the Mechanical Foundations
of Thermodynamics™*

by A. Einstein.

[Annalen der Physik 34 (1911): 175-176]

In his superb papers titled as above, Mr. Hertz has criticized two passages in my papers
on the same topic. In the following, I will briefly comment on these criticisms, noting
that what is said here is the result of an oral discussion with Mr. Hertz, in which we came
to a perfect agreement regarding both points in question.

1. In the penultimate section of §13 of his second paper, Hertz criticizes a derivation
that I gave of the entropy law for irreversible processes. I consider this criticism totally
valid. I was not satisfied with my derivation even then, which is why I soon thereafter
produced a second derivation, also cited by Mr. Hertz.

2. The comments contained in §4 of his first paper that are directed against an
argument about thermal equilibrium contained in my first paper in question® are based
on a misunderstanding caused by an all-too terse and insufficiently careful formulation
of that argument.

However, since the topic has been adequately elucidated in works by other authors,
and since, moreover, a detailed discussion of this specific point is not likely to claim much
interest, I do not wish to elaborate on it here. I only wish to add that the road taken by
Gibbs in his book, which consists in one’s starting directly from the canonical ensemble,
is in my opinion preferable to the road I took. Had I been familiar with Gibbs’s book
at that time, I would not have published those papers at all, but would have limited
myself to the discussion of just a few points.

Zurich, October 1910.  (Received on 30 November 1910)

! A. Einstein, Ann. d. Phys. 9 (1902): 425 and 11 (1903): 176.
2 P. Hertz, Ann. d. Phys. 33 (1910): 225 and 537.
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Electrostatics

If one rubs glass, sealing wax, or other bodies with other bodies, then after this procedure
they will (temporarily) exert forces on each other that were not observable before,
without their having been otherwise influenced in a perceptible manner. One says that
they are “electrified,” where by this word one does not denote anything but what has
been said. Metals & many other bodies can be electrified only if affixed to a prop of
glass or sealing wax etc., or suspended by a silk thread. A body can be electrified not
only by rubbing but also by bringing it into contact with an electrified body.

Let us examine the laws according to which electrified bodies act upon one another,
assuming for the sake of simplicity that the bodies are small compared with the distances
between them. The forces exerted by these bodies on each other act in the direction of
the connecting lines (equality of action & reaction, we can measure them absolutely by
the methods of mechanics, for example in the following way:
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Consider now many bodies, say small metal balls suspended by silk threads, and let
us suppose that we have determined that the forces that any two of them exert on each
other, and assume, for the time being, that they are at a distance R that always stays the
same. We designate attractive forces as negative, repulsive as positive.

If we combine the bodies 1 2 3 .. with the body a of our group, we obtain the forces
F_,F,,F, ... .. Ifwecombine the same bodies12 3 .. with the body b, we obtain
the forces

Fy By Iy,

[p- 1]
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Experience shows that F, : F, : F,.. =F, : F, : F,,.. Thus, the effects of the bodies
123 .. another body always stand in the same ratio no matter how that other body has
been chosen. Hence we can characterize the electrical influence of one el. body by
means of a number, if we have assigned an arbitrarily chosen number, for example the
number 1, to the influence of one of the bodies.? This number is called the quantity
of electricity. It follows from this definition that the force f exerted by two bodies on each
other is directly proportional to their quantities of electricity.

F =k-ege,

However, k also depends on the distance.
Further, it follows from experiments that this force is inversely proportional to the
square of the distance, so that we have, with another interpretation of the constant k,

ee,

F =k
r2

where k no longer depends on the distance but only on our choice of the body in our
group to which we have assigned the quantity of electricity 1.

The sign of k is determined by our earlier stipulation in conjunction with experience.
That is to say, it has been found that quantities of electricity that are alike according to
the above definition repel each other. Thus, k is a positive constant. Its value depends
on what we stipulate as the unit of the quantity of electricity. However, we may also
freely choose k and thereby define the unit of the quantity of electricity. We do that by
setting k = 1. We have then

F=22
r2
In order to measure a quantity of electricity absolutely after according to this <kind of>
definition,™ one has to measure, in principle, a force and a length, which quantities
occur in the form

e = yforce - length = M¥L**T"

This is the “dimension” of the electrostatically measured quantity of electricity.

We must mention a few more facts that are of fundamental importance for the
foundations of the theory.

If a quantity of electricity e, is subjected to the action of two quantities of electricity
e, & e,, one finds the force acting on e, from the law of the parallelogram of forces. In
the special case where e; & e, are very close to each other, their effects on e, will add up
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algebraically; in other words: the quantity of electricity of a system of bodies is equal to
the sum of the quantities of electricity of the system’s individual bodies.

This principle can be further extended, given the character of our experience with
electrified bodies. If bodies with quantities of electricity e, & e, are brought into contact
with one another, then, in general, their electric state will change. But their action at a
distance on a third e. q. e, will not change upon the contact, and so the sum of the
electrical quantities will not change either. (Important law of the constancy of the sum
of quantities of electricity, an exception to which has never been found.)

We endow these two laws with a tangible, physical meaning by imagining that the
substrate for the quantity of electricity is some sort of indestructible matter, which,
however, must be thought of as being present in a positive and a negative modification,
because the experiments alluded to above show the existence of positive as well as
negative electrical quantities (in the case of attractive forces).

One more thing has to be added to complete what has been said so far, for there is
no way to decide which sign to ascribe to a specific given electrical quantity, because the
interaction between two e. q. only makes it possible to decide whether the two have to
be assigned like or opposite signs. But all that is needed, therefore, is to fix the sign in
a specific case (glass rubbed with wool is positive), in order to fix signs for all other
quantities of electricity.

In completing what has been said about the auxiliary representation of positive and
negative electricity, it should be added that one imagines that the interactive forces act
between the electricities and are transferred from them to the carriers of electricity
(bodies) to which they are bound. We further complete the picture by the assumption
that not only the algebraic sum of the electrical quantities, but also the sum of the
electricities of each of the signs is constant—a proposition that is part of the picture and
that cannot be either directly confirmed or directly discomfirmed by experiment.

The action of a system of electric masses (e, e, ....) on a pointlike quantity of
electricity (e).

An electrical quantity e,(x y z) exerts the force K on a quantity of electricity
e(a,b,c).! We have €

2-¢

ee
K =1, where 7 = (x-a)* + (y-b)* + (z-¢)*. "'/J:
r 1 | % 27

P
L . . x-a -b z-c .-
The direction cosines of this force are =, L, -
r r r

’

so that its components are




[p. 6]
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If several masses e, e, .. .. act simultaneously on mass e, we get®®

For a given distribution of the masses e, etc., and a given position for e, these force
components are proportional to the e.q. e. But the sums appearing on the right-hand
side depend only on e, ¢, ... & the test point. These sums

. €, X-a
Y _51 —— =X (other components Y Z)
1 rl rl

are called the X-component of the electric force or field strength. It is equal to the force
exerted on the unit of electricity. X Y Z is a vector which is related to the vector of the
force acting upon the e quantity e in the following way:

Ki=eX K =e¢Y K =eZ..... (2)

If one draws from every spatial point a directed straight line in the direction of the field
intensity, one gets a picture of the course of the field intensity, of the vector field X Y Z
that brings about the (possible) actions of forces deriving from the quantities e, e, etc.
This field is determined chiefly by 3 spatial functions (X Y and Z). However, these can
be reduced to a single spatial function. For we have
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x-parh ypad_ 2 E[f—l] ’
2 2

non roox Ox

. 2 = . . i

since because 7 = (x-a)* +-+ rdr, =(-a)dc + -+ Hence, if we set

el
2 — = ¢, we get
r

1

x=-2¢

ox

alp el
Y:——___ (p:E__r (3)

dy r
z=-2¢

oz

Thus, X Y Z can be described as derivatives of one spatial function ¢. We call ¢ the
potential of the masses in question.

The Physical Meaning of the Potential

We consider the electrical unit mass in the field of

the e. q. e, e, €;.... We move the unit m. from the point g\j
P, to the point P,. For an infinitesimally small portion of %

the path with projections dx dy dz, the work performedby ¢
the forces of electric origin equals Xdx + Ydy + ZdZ.

The total work is therefore A = ﬁ’ Xdx + Ydy + Zdz
With the help of (3), this work can be given the form

A

= [ 294 + %y + 8% = ~(d
A J_é;der—é;y-Faz I¢;

where do denotes the total change of ¢ when the element dx dy dz is traversed. Hence
we obtain

A=‘p1—(p2.-v-. (4)

Thus, the work done on the unit electr. mass between two points is equal to the potential [p. 8]

drop between these two points ¢ is independent of the choice of the coordinate system.
This quantity is totally independent of the shape of the path. Hence, if the unit pole




[p. 9]
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describes a closed curve, i.e., if P, & P, coincide, ¢, = ¢,, and hence the work 4 = 0. This
fact contains the more profound interpretation of the reason why the vector XY Z of the
el. field strength is derivable from a potential. If the integral were not to vanish for a
closed curve, it would be possible to produce work from nothing, without limit, by means
of electrical quantities.

The Theorems of Laplace and Gauss. Lines of Force

<Here give a little kiss to his poor!>

The funct ¢ provides a graphic overview of the course ”"6‘-!.,
of the el. field. If one thinks of a surface ¢ = const., then / 2
the field vector XY Z will be perpendicular to the surface /7/

¢ = const. Because every derivative - %9 taken in the .é/‘/
S

direction of a line element in the surface vanishes. If we // '
think of two adjacent surfaces ¢ = ¢, & ¢ = ¢ - &, we

will have - %‘9 = %, and since ¢ is everywhere constant along the two surfaces, % is
n

a relative measure for - g;f , i.e., for the el. field strength, or—as we will call it in brief
for the el. force. An additional aid for intuitive visual
representation is provided by the concept of lines of
force, i.e., of lines that at each point have the same
direction as the electric force. According to what we
have said, these lines of force everywhere intersect the
surfaces of equal potential perpendicularly. Beyond this,
we will see that the density of these lines of force is
proportional to the field intensity. But in order to do
this, we must first derive a few laws.

The Theorems of Laplace & Gauss

If only one charge is pres., then ¢ = _e_, where
r

r=+ \/(x—a)2 + (y-b)* + (z-c)*.
Diff, we obt.

dg . _ex-a
ax »or

- 5k
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g _ e  3e (x -a)*

x? Ao

2 2 2
From this, Agp = ?_(_P + _é.)_ip + a_(p = 0....(5) also holds for an arbitrary number
x> 9y 9t
of masses (Laplace’s theorem)
We can express this theorem in still another form if we use the field intensity instead of

the derivatives of ¢.

?_).{ +.§7+?£ =0....(5)
ox dy oz

We can give this theorem a new form by integrating over a volume bounded by a closed
surface that contains no electric masses.

[ %2 pdyaz

az

Portion of an element

drdy = dedy | %_Z &z = dedy(Z,-Z,)
24

if n, and n, are the inwardly oriented normals,
then!”

dxdy = - df, cos (nz) = df, cos (ng)

We can set - X7 cos nz df over the two elements
Every other element dx dy has the same form, so
that when one finally replaces the sum with the
integral, one obtains™

“Zdt = —IZ cos nz ds
Applying this theorem three times, one obtains

0 =J§ + ?_Z+ _qur = —I(Xcosnx +Y cosny + Z cosnz)ds.
ox dy oz

Considering that the expression in the brackets is in fact the field component N in the
direction of the inward normals, we obtain

[p. 10]




Ip. 11]
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des =0.| ®

which we can also write in the form J%g ds =0

This theorem yields us a further property of
the field of electric lines of force. Define tube of
force & write down above theorem for it. Integral
vanishes on the surface. On the initial and termi-
nal cross section we have

N, fi = N, fo

N
This vanishes. —- = fl Thus, the field strengths vary inversely as the surfaces of the

1 2
tubes of force. If one draws a number of lines of force through f, and continues them
up to f,, then the density of these lines of force will likewise be inversely proportional to
the surface areas, and thus directly proportional to the field intensities N. Thus, one can
draw unending lines of force in the field, so that line density = field strength. This is why
the lines of force afford a quite complete & direct intuitive visual representation of a
field.

Equation (6) expresses the one special case of the so-called Gauss’s theorem.”
This equation can easily be extended to the case where the closed surface encloses
electric masses ¢, €, ....

We extend the surface integral to the volume bound-
ed by the giv. surface F and the auxiliary spherical surf.
K, K, etc.

des +des +des... = 0.
F K, K,

We seek integral extended over sphere K; We divide the total field into 1. X; Y; Z; Ny,
which derives from e,, & second, the rest X'Y'Z'N’

e
The surface integral IKIN’ds vanishes, IK N ds = ._; 4nr® - 4me, We thus obtain
1 r
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des = -4y e, (General form of Gauss’s theorem.)

Continuously Distributed Electricity

So far we have assumed that electricity is unalterably bound to small bodies (treated as
points). But the character of experience favors the assumption that electricity is spatially
distributed. We must generalize our investigations in this sense. To begin with, we think
of electricity as continuously distributed, pdt being the quantity of electricity in the space
elementdz. p is the difference between the densities of positive and negative electricity
at one locus, as we imagine it. We assume that the electricities are movable relative to
ponderable matter, and that they cannot undergo any other changes except those of
position. This model is suggested by the earlier-mentioned empirical law of the constancy
of the quantity of electricity in the electrical balance between two small bodies.

The following should be noted here. We have seen how experience led to the introd.
of the concept of the quantity of electricity. it was defined by means of the forces that
small electrified bodies exert on each other. But now we extend the application of the
concept to cases in which this definition cannot be applied directly as soon as we
conceive the el. forces as forces exerted on electricity rather than on material particles.
We set up a conceptual system the individual parts of which do not correspond directly
to empirical facts. Only a certain totality of theoretical material corresponds again to a
certain totality of experimental facts.""

We find that such an el. continuum is always applicable only for the representation
of el. states of affairs in the interior of ponderable bodies. Here too we define the vector
of el. field strength as the vector of the mech. force exerted on the unit of pos. electr.
quantity inside a body. But the force so defined is no longer directly accessible to exp.
It is one part of a theoretical construction that can be correct or false, i.e., consistent or
not consistent with experience, only as a whole. The laws that we found empirically for
small electrified bodies we now apply to the fictional electricity itself.

We invest. the pot. of cont. distribution

Q= Ipﬁ R small radius sphere about the test point region decomposed polar
v
coordinates introduced
c-z=rcos?®

a-x=rsin ® cos ® volume el-sin®drdwd &
b -y =rsin ¥ sin ®

In small sphere J'Kf_d_f. replaceable by [p,rsinddrdwd @ always finite. Thus, the integral
F

is not infinite.

[p- 12]

fp. 13]




[p. 14]

[p. 15]
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d¢ _ pdtc—z

- > = IR + IKpcosfr sin® dr do d?b.
'z r

The second int. is finite."™! Hence field strength always finite. One proves that when
p with all derivatives is continuous, the same must be true of ¢.

The equation Ag = 0 is not valid here. We find the corresponding theorem by
applying Gauss’s theorem to an arb. closed surface inside the continuum.

f@ndo = —I41rpd1:,

where €, denotes the component of the el. field strength along the inward normal. First
we apply the theorem to the special case where the surface is the boundary of an
elementary parallelepiped. The right side becomes -4np dt. The left side

_%+6@y+6032 J
or ox = dy | oz ‘

If the two sides are set equal, one obtains

o€ o€ :
—_ 2+ I =47
ox dy oz

If one replaces €, etc. by the derivatives of the potential, one obtains

+Ag = -4dnp

This is Poisson’s theorem.

Distribution of the Electricity on Conductors

A conductor is a substance in which the electricity is freely movable. Equilibrium
possible only if no forces act on el. in the interior. €, etc. vanish. Poisson’s theorem
applied to a point in the interior of the conductor yields p = 0. Thus, the electric masses
sit only on the surface, & in the interior of the conductor ¢ = const.

Since the electricity is distributed two-dimensionally on the surface, we must consider
a two-dimensionally distributed potential.

DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 261

1) Potential is uniform over surface. A little piece of
the surface is cut out by a cylinder around the spot under
investigation. That which derives from the external part of
the covering is uniform. That which derives from the
internal part vanishes for small radius; for™”

R
(‘)i:J‘_r]il_cs:nOJ'Zm;dr:ZﬂR,

which decreases with decreasing R.
From the constancy of ¢ it follows that the tangential components of € on the two sides
of the layer are equal.

= I ! "
1 (P?}‘Pl—%:(ﬂz—‘l’z =

® =0, {%%

O1— Q1 _ 02— @3

Gt2 = @tl

From this it follows €, vanishes on the external surface of a conductor, i.e., that the lines
of force must intersect the surface of the conductor perpendicularly.

2) How does the normal component behave on the two sides?

This follows at once from Gauss’s theorem.!’!

dnodf = €,df — G, df \%«\
%se .

.
<

or

€, — E,, = —4no. SPeCial € =0 G, =4no
case

or [29] - [Z_(p] = 4mo, if both normals are taken toward the external side.
on), n),

Force on piece of the conductor surf.

[p. 16]




[p. 17]
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rad -

/Jggzdz =€, — €, =4andz = 4dno
Z

o,
+ 4np = -
o€ 1 1
i fp@z dz = ngﬁdz = 5(€% — €3)| Kraft = o &

The problem of finding the distribution of electricity on a conductor is now easy to
formulate mathematically if we further stipulate that the potential should be constant at
o, If all effective el. masses are at a finite distance, its value there is zero. For ¢ can be
determined from the following conditions:

1) ¢ = const = P, inside the body

2) A ¢ =0 outside the body.

3) ¢ constant on the surface of the "

body. ¢ together with the derivatives in

the external region.

4) ¢ vanishes at .

We prove later that these conditions are .
sufficient. ~
A

e difference ¢, of two solutions ¢, Ve

ide on the surface. <Thus, Tt

if there existed a closé

the external region>
We now choose a closed surface in the

2 2 2
J28] +(22] (29 = -fo
ox dy oz )
If ¢ is determined in accordance with these conditions, one obtains the surface density

n by means of the relation4nn = ¢, = —%9, where the normal is directed toward the
n

ace anywhere in

outer side of the conductor. One obtains the total charge by integrating n over the
surface.

Example. Let the given body be a sphere. We show that the solution ¢ = % in the
r

external region and ¢ = P in the internal region satisfies all the conditions.

1) satisfied
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2) satisfied, because A(.‘f] =0
r

3) satisfied, if & = P
R
4) satisfied.

We determine the charge e.

1(de¢ la
e = (ndo = [ *_Rudx =a n = -__[___] = b
fﬂ I41tR2 A

Thus, we obtain

e
= -
r

e = RP

This shows that e is proportional to the potential difference P. This holds not only for
a sphere but quite generally. For let the problem be solved for a specific P. One then

finds the solution for a P* = AP by using the function ¢* = A¢ instead of ¢. Thus,g

depends only on the shape of the conductor and is called the capacity of the latter. The
capacity of the sphere is equal to its radius.
Instead of a single conductor, let us think of one surrounded by a conducting casing.

1) ¢ =P, in the interior ¢ = P, in casing
2) Ag =0 bet. body & casing
3) constancy req.

Then AP,AP,A@ solution Ae el. quantity
on body as well as on casing
Charge dep. only on pot diff.
P, -P, AP, -AP,

= ¢ capacity, (mutual)
e Ae

Example parallel plate condenser™
¢ P Pf f
= —-_Y = 4 = _ = = T J C = _J_ .
E ox e ) ¢=of 4nd 4nd

[p. 18]
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Example concentric hollow sphereé.

@ = % + P

a 1 1

— =P e - =P -

g Ph "‘[R1 RZ] B
o _ _ RR,
E+B_PZ a—(Pl— 2>R2—R1

# does not interest us.

e = Indo = _f a‘pd 2R = o

2

e _ RR

"2

= = t i
PP, R -R mutual capacity

Even simpler derivation (center)

Example concentric cylinders, ¢ dependsonlyon § = {x* +y?> . One could set Ag =0

for this special case & integrate. Even simpler, apply Gauss’s theorem directly. e = el.
charge per unit length

4ne = 2nre,
er = _%e; - —a_(p
r or

@=-21lgr+const = -2¢lg .
¢

Boundary conditions yield

R
P, =-21g2
c
P,=-21g 2
c
R R
P1"Pz="231g1—23=231g§2

Capacitance = ¢ = ¢ -
P -P R,

21g...-

R

1

Becomes zero when R, = . Only slightly dependent on the ratio - —

Electrical reflection of two spheres.
Uniqueness of the solution. Green’s theorem.

fauaV e
Ox Ox

fdy dzj[aUanx jdydz[ V] jU__dt

- oCoSnx

j U_._do j UAVdr

IU[_msm +

] jU._do

The above equation is a form of Green’s theorem. If we set U =V & AU =0 & on the

surface U = 0, then f [Z_UZ. oot ]d‘t = 0 Provides the proof of uniqueness. It is easy
x

to calc. U in a point if one knows U & %I.J. on the boundary surface of a space.

n

Electrical Energy

We start again from system of small electrified bodies. First two bodies a & b. Mutual

e e
force 2.t =F
r2

Components

fp. 19]




[p. 20]
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R dx, _ "% dx,
r r

Fyb—ya dyb .___Fyb.-ya dya
r r

pi % dz, _ e dz,
r r

A +F{(xb—xa)(dx,,~dx,,)+ 4 } =Fr—:lr=Fdr
r

Can also be understood geometrically

o®, ee,
But F = - a",whered;b= 22,

r L

od

or,

dA = - = -d®,

rab

If many masses are present, one obtains the analogous expression, but one has to sum
over all combinations.

dA=-LYda, - -dYye)--d =33

The elementary work is equal to the decrease in the function ®, which we may call the
potential energy of the electric forces or simply potential energy. When doing the double
sum, each combination should be counted once.

But if one proceeds by first comb. the mass 1 with all the other masses, then mass
2 with all the others etc., then one counts each combination twice; hence one has to set

2EDR)

The potential energy of a system with continuously distributed masses is to be built in the
same way, except that the sums have to be replaced by integrals. One obtains

® = % J’Ipd‘tf;’ dt’

Sa €,
rab

eaeb

1
- or ‘P"‘Z'Zea“’a

1
or &= 5 I(ppdr
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This expr. is very important, for it permits the calculation of the forces that electrified
bodies exert on each other.

We attach to this expression a theoretical analysis. ® can be decomposed in such a
manner that one assigns the energy “2¢@pdt to the individual volume element. Then
energy is to be assumed only where el. masses are present, e.g., on the surface. However, [p. 21]
the energy can also be localized in another way. That is to say, we have

1 11 |o% 1
®=_ dtr = -2 .o . = - Ao d
5 Jovds = -5 [o 41t[8x2+ ' ] 5 s ds

2 2
Now, q)?_(_{) = é. (p_a..(? _(2e
oxt  ox| ox ox
If we integrate & take into account that ¢ & its derivatives vanish at the limits of int., we
get

1 o4’ 1 2, @2 . o2 1 2
O=_ ||~ +-+-|dt=— |[(€+& +€&)dt = — |€dr
811:J[8x ]1: SWI(" )+ €) Sch
Here a volume element contributes the term €°dt. The energy appears localized in
space. Of course, all these expressions for the total energy are equally valid. We find

easily the electr. energy of an electrified conductor It is
1 1 1 1 1 E?
®=_ dt = P|pdt = _Pe = _Pc = _—_
5 Jopde = 5P [pde = 5P = 5Pe = 5=

Application of the energy law. E in the conductor experiences an infinitely small change
1) through addition of the quantity of electricity dE, along with el. work PdFE.
2) through change of shape. mech. work taken up = dA

The energy principle yields the equation

PAE + dA = d® = %(PdE + EdP)

The mechanical work -dA4 done by the system is

_dA = %(PdE - EdP)

If dP =0, then PdE is el. work supplied. Half of it is converted into mech work. But
if dE =0, then




268 DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM

< 2 c

dA = ‘Eap = lEd[E] - d[lf’f_z] - d[lEP.]
3 5 3

[p. 22] Some Properties of a System of Conductors

We imagine that the conductors 12 3 .. are charged How do individual potentials
depend on the charges? -
If ¢ is a solution, then ag is also such <€w .
a solution, with the surface densities, and thus also S / »
the total charges, being multiplied by «. N ‘>
We start from the case
P=1 P,=0...... let @, be this solution.
¢ = P ¢, is then also a solution.
If one defines ¢, analogously, then
¢ = P,p, is a solution. The ¢, ¢, etc. are determined by the conductors alone
¢ = P,@, + Py, ....is also a solution.

2

Thus, ¢ is homogeneous & linear in the P. The same holds for %‘f , hence also for the
n

individual E, ... E, R R
Thus, we get ay P{ + 201, P\ P, + a3, P;
must not be negative™
E =a,P +a,P, +.... 4y, Gy, — 2ay, > 0
E, = a,P, +ay, P +.... ¢ sometimes another form more convenient
Solving for P, we get E, = 411 ‘; ‘112(P1 +P,)
P =b.E +byE, +.
b a1y — Q42
4" %2p _p
P, =byE +b,E, +...... 7 P
a,y +a
E,= _21_,§_£(pI + P,)
+ “_21_'2'_“22_(1)1 —P)

[p. 23] The coefficients satisfy a condition that we must derive. If the coefficients are constant,
i.e., the position of the body remains unchanged, then Y.P4E must be a total differential.
This is the case only when b, = b, and a; = ay. This means........
One obtains the equivalent expressions

DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 269

®= % Ezaikpipk

®= % EzbikEiEk

From this we get

E = _69_<£> ...... where ® is a funct of the P
opP,

Pl - _a_g ...... " i "non 1" " n E.
oF

1

We again investigate the work performed. The latter is accompanied by a change in the
coefficients. Work supplied dA = - d® at constant E

dA, = —% (EAP, + E4P, .....)
The quantity of work is equally large if P is constant. But one has to increase the poten-
tial by dP,; ..... In doing this el. work is supplied d4, = PdE, + PdE, ......

{161

A, -dA, =d® Y PdE - % Y EdP = .Y PdE + %EEdP

Here PdE, + .... = %(PldEl .. +EdP,.....)

or Y EdP =Y PdE,
Hence the supplied
el. work is!"®

dA, = XE dP,

dA, = 2dA.

better this way:™!"

dA, =d® +dA,,

dA,, = XPdE - V3 .PdE - 2XEdP
dA,, = XPdE - 2XEdP

For constant potentials

dA,,= 2 dA,

4. Example Motion of a Conductor. Plate Condenser

Examples.

Two spheres whose distance from each other is large compared with their radii. We

calculate potentials as funct. of the quantities of electricity (approximately).

E, =b,E, +b,E,

E, =b,E

2171

G——%

g

[p. 24]




[p. 25]
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When the second sphere was moved closer, the potential of the first sphere was increased
if the two were similarly charged, while the reverse took place in the opposite case.

®- %(P1E1 +PEy) = %(bnE% + 2, EE, + byEy)

We also calculate the constants @, which permit the evaluation of the capacities. To do
this, we need only solve the above equations for E; & E,. Setting A = b by, - b2, we
obtain

-1
El:K{b P, -b,P} =a,P, +a,P,

2271 127 2

1
E, = A {"b12P1 + anz} =a,P, +a,P,
From this we obtain the quantities of electricity for given P. If, for example, P, = 0 (the

second sphere permanently grounded or connected to a casing, we have™”

The presence of the second sphere increases the capacity of the first.?)

§3=_b_12u_b12 =_R1R2
P, A bb,, D
On the second sphere the opposite charge is produced of the approximate magnitude
P RIRZ
D

One can reduce the problem of the interaction between a sphere & a conducting
plane to the problem of the interaction between two spheres using the principle of the
electric mirror-image, which consists in the following: One sees that the case body-plane
can always be reduced to the case body-symmetric body.?? We have
E =a.P -a,P =(a, -ay)PD=2D"

1
In our case we have, for example?®
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The case of two wires at a distance from each other can
be treated in a manner very similar to the case of two
spheres at a distance from each other, even if a conduct-
ing plane is present. All one needs for this is the poten-
tial of the electrified line. We shall not go deeper into
this.

In those cases in which the field is known, another

way of treating the problem, by means of & = .gl_f@zdt,
Y|4

is often more advantageous.

Plate Condenser

Only the field between the plates away from the edge is

considered.?
L3

08, =0 €& =const
0x
1
o= _¢ -
=& f

Ag = -j%’dx - [edr =3

€
Quantity of charge E = a;x'f. 4mn = €,
. E _f
Ca = o=
pactty Ap 4nd

. 1 1 1 1E
We find ¢ = _ = _ - = _ —- 20 .22
() 2EA(p 2E(P1 P;) 2(P1 P)*C 7

We find the attractive force by constructing

89) _1lpd(amd) lpdn _lp 1 _lpgpl lp f _lg
3), 2 %\ F) 2 F 2 ¢ 2 B 2 4ns* Bn

Thus, the force per unit surface area is %@x.
L

This last law can be derived quite generally. We seek the force that acts on the charge
of unit surface. We think of the latter as being of finite thickness.

Force = Ipctxdx

where A = 4np
ox

[p. 26]




[p. 27]
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1 J o€, . 1 1 ey 8
Thus, it is as if the outer normal force acted on the whole layer.
How does P change if one varies 8 at constant E.

= — .___x —_ 2 ~ —
an ¢ dx Gx n(gx %ﬁ'
E 4nd

¥ ox 8n 2
P=_"=F _f-_ The potential difference varies as 8. Means of increasing the
c

potential difference by expenditure of work. How does the potential change in the case
of circular plates if one increases the distance to « for constant quantities of electricity?

1 [ pA4
E=P.C ®=_Gs=I "

2e 1 525785
E=P2C2 P2

i (3>

P, C; 4nd f =R

22 T o L PR e f P?

P, C 2R 86R L

! 2 “7;‘ 89 00 8n 62

Application for the detection of small potential differences by electrostatic means.
(Volta’s experiment.)
Absolute measurement of potentials by the “guard ring” electrometer.”

o (1E®\ 1 _4n
f O (LE™) 1.pdn
oree aa(z c> ¢

AN IR YRR INAN|

= 21+ P*: '—=-—-—P2

Since the force can be measured absolutely, & so too f and 8, the same is true of P.

Kelvin's Quadrant Electrometer for the Measurement of Voltages
and Small Quantities of Electricity ™!

@ = L@, - py@ -x P 2
2 TAWANEI T 111
TNEN 0.,

+ 2x(Py - pFla + 2

Interests us only insofar as it is dependent on x

®={(P, - p (P, - p\}x

|
-
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D - {f’a;?] = x{(P, - p) - ) - p)}

4

Most important circuits 1) p = P, D = x(P, - P,)* Quadratic instrument

2) Needle at auxiliary potential p.P, = P - .‘;.‘ P =P+ %

D =2xa(p - P)

If p large compared with P, then instrument is linear.

12
€

e 1
8§ 12 01
1
10
Maschinchen™ & Thomson’s Multiplier.
e=P C

» el g C

== = e=PC' P=P__

¢ “

Even stronger amplification if stirrup P = Plg
c

Repeat Maschinchen

If one more connection, then Thomson’s multiplier®™

[p. 28]
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Drop multiplier

All induction machines are based on this principle.

Dielectrics

Experience. Voltage on condenser plates drops if a nonconductor is
inserted between them. Conversely, if the voltage is constant, the
quantity of electricity increases in a specific ratio. This ratio is
characteristic of the (homogeneous) nonconductor in question. It is
called the dielectric constant. <The theory that has been put forward
thus far can be maintained for this case if one imagines that electricity

SN

Ip. 29] possesses limited mobility in the dielectric. Neutral molecules become
dipoles>
N\
(
/N

We can now distinguish two kinds of field strength
1) Field strength between plates & dielectricor L lines of force in an arbitrary gap. (B)
2) Field strength in a channel connecting the plates L. The latter is equal to

P -P
! 5 2= —%(9, if x is the direction of the axis. As before, we denote this kind of field
X

strength by €. The relation B = e€ is generally valid everywhere in the dielectric.

It is easy to calculate the energy of such a system. We have d® = PdE, if the plates
are immovable.
But according to the special form of Gauss’s law
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E f
B=4no = 4n = dEl = L. dB
f 4x

P=—}aﬁdx=at‘6
0

ao = P eap
4n
Integrating, we get ® = Vee=-Yen
8n 8n

Accordingly, we generalize the earlier expression for the energy to
1 €
®=__|€Bdt = _|¢&"
Snj T 811:‘[43 dt

Intuitive representation by means of dipoles which strive to bond with one another by [p. 30]
elastic forces.

D, =¢C,
y = ¢€, »1 In vector notation abbreviated B = €
D, = ¢C,

B, number of the electric lines of force (field strength) through gap perpendicular to the

X axis etc. €, field strength in channel parallel to X-axis. What kinds of laws hold for
the vectors B and € inside a dielectric?

1) € derivable from the potential.

-~

oo
(G o
0
€, = —6—(p~ > (2) Intuitive model.
y
Op
€, 2

or, as verified by differentiation




p. 31]
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o€, 0, _ ) Vbbb,
0y 0z o
o€, o€ L ! Gl
O T 2
0x 0z 0 (22) K
a@x _ ng_ — 0 \\_//
_a; ox .

2) A surface containing a great number of unbroken dipoles set up in the gap. Here
Gauss’s law holds.

f(normal component of the field strength in the gap) .de =0

[®,do=0..... 3)

If one applies this law to a parallelepiped that is enclosed in the gap, one obtains

e TN ST )
&x 9 Oz

What conditions hold on the boundary between two dielectrics? The constancy of ¢, and
hence also the constancy of the tangential components of €, holds here as well

Etl =@'2 ceve (20) 'fz .%/
# #
If one chooses a relatively infinitely low cylinder whose bases are sgparat,ed by the
boundary surface, and applies to its boundary the generalized form of Gauss’s law, one

obtains

Refraction of the lines of force at the boundary between two media
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QEt1 = @rz

g€, = e,¢, e,fga;, =e,tga,
tga, &
tge, e,

Case where movable electric quantities of spatial density p are also present.
(1) and (2) are valid here too

3) becomes IiB,,do = *41|:de‘t 3

62Dx+6fby+6bz_4 3%
ox dy 0z P (3a%)

The Meaning of Dielectric Displacement fp. 32
According to the Electron Theory™

The circumstance that the dielectric displacement and the electrical field strength are
different in the interior of insulators has been attributed to the limited motion of
elastically bound electricity. We investigate the meaning of B according to this con-

ception. Positive as well as negative el. in nonelec-
trified state density p,, 8 - € is produced by the / / /
I . ’
3p, is posit. coating below // /
-8p, neg. coating on top.

field in the gap through the action of bound electrici- £
ty. If 8 is now the displacement of the positive el. in

Each sends out 4n3 p,lines of force, hence, 2n8p, to one side Both together 4ndp,in
the gap. Thus, we have

the insulator, then

B - € =4ndp,

Nothing changes here if we assume that the electricity in the dielectric is distributed in
discrete quantities =+ e. Then p, = ne

dp,=ned =nu =P
m

Thus one obtains
B - € =4nP.




[p. 33]
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Electrostatic Energy

.g%jex;ax +€B, +)dt =@ = %Icppdt | Extended over « space.

Another form.

op oD,
B 2R N . SO o

Thus, the second form of the energy expression also holds unchanged. The uniqueness
proof for the conductor problem in the case where arbitrary uncharged dielectrics are
present is also easy to carry out. We think of the dielectrics as being uniformly

distributed. In that case ¢ & %(_p etc. are constant in the entire space except on the
x

conductor surfaces.

[@By+ -+ ) = +[(om,)do + [opds

In the domain of integration p = 0. on the boundaries ¢ = 0 for difference solution.
Thus, the left side = 0, which is a sum of positive magn.

Charged sphere. Generalization of Coul. law. Forces calculable from ® using the energy
principle.

k-t .1
7 £

<Energy of a> charged sphere <P> in the dielectric.

476 = €p, = Byeer. = Ept

= -1
N ‘&;

o= o=

o

It requires less energy to charge a sphere in the dielectric to the same quantity of
electricity, more energy to charge it to the same voltage.
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Plate condenser partly with air, partly with dielectric [p. 34]
i

-

620 .
ax ox
B, = €,

<4no = PB,> boundary condition® ¢ = ® forx =0

'i":; 0 , ¢ =0 forx = 8,+8,

E:l:@Z fOI’x = 5

Vectors spatially constant

(I) = @151 + (62(52
Dl = (EZ = 8(‘51

0
& €
1

Charges —_1_.62 —3B; = 1, thus, equally large.
4n 4

TC
) E 5
® = 4m|5, + 1| = anZ|s, + 2
’"‘[2 ] “f[“e]
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c-_f
61
41:62+_8_

static methods for the determination of the dielectric const. Comparison of condenser

potentials when the charge is the same.
Force proportional to £ when voltage given. From this, the dielectric constant of

liquids.

[p.35] Rising of liquids between plates. Perot, refraction of the lines of force.P

Iga _ ¢ LS—

gh e _
— A
| |
v
1 S -&[. -

o = height of rise without field.
o +x = height of rise with field

Pot. energy of gravity & - (<& +>x) °p~%§

§ (o> +x) og

= 3

L@ + 80 -0e)
8~

e

d® = work of the el. forces

-d® = work of the grav. forces
Sum must be zero.
1
8n
absolute measurement of (e - 1).
Better directly with force.

d(<a+>x)pg - —€<8> (e -¢) =0

Volta Effect. Electric Double Layer.
Magnetism.
Coul.’s Law Unit of Pole Strength. Potential Laplace’s Theorem
Intuitive meaning of the magnetization constants. Let us have a homogeneous isotropic
material in the shape of a bar. Let it be uniformly magnetized. Displacement &

|
|

|
x
|
-
|
|
I
L
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Density of the polarization electricity™ of either
sign p, How large are H and B? Material surface
perpendicular to the x axis. p,d positive <electric-
ity> magnetism has traversed unit surface area
Coatings of density p,8. When surface slanted, ‘
then p,8cose exit per unit surface. If molecular :
model, then p,=u - n Density of coating
undcose = @cosg @ polarization. Channel walls
do not have magnetic covering. End surfaces can
be neglecte@hus, magnetic field str. in the interior of the channel the same as in the
channel.

But in the gap the coverings do send out lines of force. From Gauss’s law directly
B - B = 4n<@>. Exactly as with dielectrics. There are no true magnetic masses. From
this it follows that

| =

e annnd

dB, 0B, 9B
I%ndo=0. or Iy 2+ =0
ox dy oz

B derivable from a potential. Potential of the densities of bound magnetism.

o9
= —__— etc.
o ox

These are our fundamental laws.
Where is the density of the bound magnetism located? Surface in subst.

4nfpgd1 = J.Sjnda= —J“B,,do

= _<aﬂ3x L %, aﬂs,)

ox dy 0z

Parallel magnetized iron bar [~

4 =

Magnetic coverings of bound magnetism = f$,
The fields % and B are here independent of each other in the magnet % and % are
differently oriented in the magnet.
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\@4\

/\_.x/

This is g L%
8w
b) If u # 1, then this energy has another value. One can calculate this value by taking
into account that work must also be expended for the displacement.
The posit. magn. masses of the unit volume are subjected to the total force Bp, The

1 work expended on the displ. d8 is Bp,dd. This is equal to HdP because one can set
> Pod = B.

i

i

In the process, magnetic energy in the vacuum increases by 4i39 db.
T

The two combined
| 1 1
l —Bd(® + 4nP) = —BHdB.
4 4n

If B = uB, then this is integrable 41[,.@ d®
T

[p. 37] Magnetic force exerted on each other by very closely neighboring surfaces.
If u = const, then

1
| g = 7-(5 — 9) 1 .39
— 8n
— 4mp = ?_Sk ng_ ‘7_553 per unit volume. As a matter of fact, one may designate this energy as “magnetic.”
gl I ox Oy 0z But things are different in the case where no v
5’ 0 0 relat. exists between % and . In that case, too,
{ a5 ! Hd® is the work supplied to unit volume. But this
dx = — *dx = —(H2 — H?) work need not represent an available store. Surface
PDx 4r D= dx 8 ¢ P
of the “hysteresis curve” represents the energy lost in
z‘ 1, R a cyclic process. This energy is converted to heat. &
K =B - %)
’
P i &

If iron, then B; larger than %, so that approx. K = .gL B
T

The Volta Effect - Electromotive Forces
In the arrangement shown in the accompanying sketch, one observes an el. field
between the plates. Such a field would not to be expected according to the
theory employed so far. Potential diff. cannot arise in the interior of metals.
Hence they must arise on the boundary surfaces. Let us first assume that the
: potential jump occurs more or less at the contact surface of the metals—later on this will
turn out not to be valid. Volta discovered.

This must be eq. to the magnetic energy of the unit volume.
Can be very large. B, = 20,000 K ~ 2.10° = ca 20 kg per cm’.

Energy of the Magnetic Field

a) in vacuum EEIJL'L;‘_, = %Emp ®




[p. 39]

[p. 40]
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@ ;{ Mechanics of the effect "‘f
e

Contradiction with the theory employed so far. How can the latter be extended so
that in agreement with experience At the surface of separation, electricities are acted
upon by a force that separates them. We will conceive of this as a field that has an
external source, not originating from el. masses.

This “impressed” force seeks to move positive electr. to the right.
Equilib. can exist only if the effect of €’ is compensated by an opposite
electrost. field.

- /_ 0p _ (e
¢e+¢=0¢ _8;_0 @, ¢1—I@dx.

=

)

VY g sy
T %
+ + +

»

- z Thus, there is a potential jump at the surface. How is it produced?
- " o€, _, o€’

T ox T T

- + .

s Thus, we have two opposite coverings. If €’ is constant inside the layer,

then these coverings are planar (n)|€| = 4nn Gauss’s law.

f@'dx =A@ = '8 = 4nn 8 { moment of the unit surface area of the double layer
¢

Double layer <corresponds> not an arbitr. theory but demanded directly by experience.

Is very dependent on the constitution of the surface—especially water layer. Can be
removed almost completely with removal of the latter. Thus, is located in the surface
facing the air.

If instead of air, water between the plates, then also field.
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But because water conductor, el. moves in water. Current arises. In accordance with the
law of conservation of el., such a current must also flow in the metals, so that no excess
would arise anywhere. Chem. processes on electr. Since we have already meas. the el.
unit, the unit of the el. current is also def. (Number of electrost. units flowing through
the conductor per second. The direction of the current is the direction in which the
positive electricity flows.

Magnetic Field of Currents

Current acts on magnetic needle. What is the constitution of the magnetic field outside
the conductor?

Let the conductors be surrounded by vacuum (or air). For such a case we have
found that

_ _9¢
gx__a—x
09, , 09, 09,
ox oy Tz

If the concept of magnetic field has a general meaning, then these equations must hold
here as well.
¥ derivable from a potential. In such a case we have seen until now that the line
integral of the (magn.) field strength over a closed curve always vanished.
But it does not take much to see that the magn. lines of force surround

an el. current. Thus, if we form the line integral I(%xdx +Bdy +B,dz) =

fﬁds cos (#Bds), we certainly do not obtain zero.
This notwithstanding, our above formulas may be right

[@adr+ -+ = -[do =9 -

This quantity must vanish, then, for a closed path only if ¢ is a single-valued
spatial function. How must fields be constituted for ¢ to become multivalued? In order
to resolve this, we investigate the closed line integral of an arbitrary vector.

Ip. 41]
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Stokes’s Theorem
Vector 4 4%,
Line integral ngdx +Ady + Adz

Decomposed into so many such integrals over « small surfaces which can be regarded
as planar.

Over this fgxdx

oN oA oA
Qdex=J<9IxO+ e Y [ )d
J 3%, ¢ T ane A, <)%

U o oU
=AU _|d +me d +—"J dé + —>(d
f S+ ) L G e L
0 —do cosnz +da cosny
on o oA oU
Udx = +4d = - = 22
J:ia X +do a{ cosny 511 cosnz <ay o7 )COS?DC

y am]’
———— e — ——tcosnz — —*cosnx —_————

o¢ o¢

Zcosnx — MU osny e
o 5 cosny —_

The integral is thereby converted into a surface integral.

[p. 42] Elementary Derivation of the Properties of the Magnetic Field

For a field of permanent magnets we have

09, , 9, , 09

Z_

0x oy 0z
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If ¢ is a single-valued function, this means that the line integral of & along a closed curve
is zero.

We now assume that the lines of force around a rectilinear current path are circles.
How must then the field decrease with the distance? In the space that is simply
connected & outside the circuit, the field of magn. & the field of current shall not be

distinguishable from each other. How must then the field strength depend on the dist?
&

.dﬁp-ﬁ“wf Line integral — 5(@) . (ﬁ-\d}) do — Hr)rde =0
7 ’a g"ﬂ('/

HE) 1 =) r

If we let r vary for constant r’, then
const.

we obtain %(r) -r = const. B(r) =

This law is confirmed by experience. The const. depends on the strength of the current.
It can serve as a measure of the current strength. We stipulate const = 2i, and thereby
obtain a definition for the current strength

p-2
-

i is then equal to 1 if the current produces field strength 2 at dist. of 1 cm. This
dependence on r is confirmed by experience.

If weintegrate f Bds along acircle around the current path, we obtain I& ‘rde = 4mi, [p. 43]
r

thus independent of . But this is valid not only for a circular path but for any arbitrary
path.

Bds =B rde = grﬂltp = 2ide
r
3' [B.ds = ani.
. de .
Potential® ds = -|=Xds = 2i|dd
otential Iﬁs Ias zf

de = -2idd
¢ = -2i0 + const.
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Now, ¢ is not a single-valued function, because » many angles & belong to one location.
If many currents, then pot « multivalued Differential equations of the magnetic force
derived from that.

Arbitrarily Distributed Currents (Rigorous Analysis)

We start off from Stokes’s theorem

fﬁxdx + 9,dy + 9,dz = J{(asjz —a—g—y->cosnx + -+ -}da
dy 0z

05, 99,
dy 0z
then the integral vanishes over every closed curve.
But this is not at all the case if the current is
twisted around. In that case, however, the integral

If in all points of the plane etc =0,

over the curve shown in the sketch vanishes. I%ds
cos Bds is independent of the integration path. In
engineering this quantity is called the “magneto-
motive force”. We set this quantity equal to 4ni.
We set the current density to be (i, then the
electricity flowing through do per unit time is
(t.cosnx + {,cosny + t,cosnz) do, so that we have

4nf(ixcosnx+-+-)da=J{(@_% cosnx + - + - Sdo
dy 0z

Holds also for an infinitely small surface.

. 09, 09
4 e ]
e dy 0z
[p. 44] Applications of the Integral Law

4mi = [, ds, if current wound once
4nni = [B,ds " " " n times

- ;
|
|
|
|
|
|
|
o
1:': |

DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 289

®—Q
¢ s =T
£
> lf' X (p — ¢@') = 4dnni
&= 1
—2$H,]=2-B]
5 U
F I l
=Y_-—=F-T—=4nni
fu u

¥ is called the magnetic resistance of the line-of-force tube. F jaﬁ,,df = flux
Solenoid inside & outside. Pole str. of the solenoid

Anni =B -1 ilm_iq = number of lines of force.

# = pole strength.

Determination of the field when the position of the currents is given. %, & %, two
solutions. Difference .

0. _9%,
Everywhere By "oz

] . .
Then J’(gd“ - + %) indep. of integr path = -¢. Then %, = —.£ ... Thus, in the entire

. d _ -
space ¢ dependent on single-valued potential.®® I [_é}“’f + oot ~]d1: = f‘pAtpdt 0

(at least if no iron pres) Thus, ¢ = const. Thus, uniquely determined holds also if bodies
with i # 1 are present.
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Magnetic Potential of a Current (Ampere)

What is sought is the potential function, which changes by 4mi for one circle around the

current.
[p. 45] Double layer considered®”)
al
don-—L8 = ¢[dol cos nr
fdom-8 = tf

For finite angle {x

Potential changes by 4n§ for one revolution, no matter at which point one starts and
to which point one gets. Current replaceable by double layer of moment {. Holds only
outside the double layer.

Action-at-Distance of Circuits from Maxwell’s Equations without Iron

. 0D, 09 or, or.
4 oy 0z x s oy 0z
.09, 09 0 or, or,
4pi = -2x TPz ‘g ==Y
™= % T ox PRl P
dni, = -----n--- 0 or, or,
W T
AT, = —4ni,
Rel. same as betw. pot. & el. density. Thus,
r- f i dt
r
ar
r- l_yi-{ In fact ax"+~+'=0

Y r

Ot
as consequence of Fe +-+:=0
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Represented as_the-sum of the distant-actions of elements.

4 qds = d=
iZ_izy iyz_izyzidsﬂz_yy <
r

Is 1 to i & r Choose i and r as in Fig.

Then 9 = -d—;ci p = d_rzl~sin((r) Interpretation of the vector product.
¥ r

or, oL, 3¢ . 46]

Galvanometer with Earth Field Intensity of the Latter
Magnetometer for the Determination of p"

H
l H [ ~-MH sinx = Iﬁ x=A sinZni
dar T

For small oscillations & + &.Hx =0
dr? I

2
2“] = _A{II_J For meas[---] I & I + I’

— I ©

A_/I can be determined
H

From this M & H separately (Gauss).

If H is known, then current strength with tangent galvanometer.™

From this H; & thus also i.




[p. 47]
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Magnetometer

I [ —

If infinitely thin magnetizable bar inside, then deflection owing to transverse field.

ih;_in =% known.
B=uh @=@-DB
o m= Dy g

1 1]
m& 74‘%

If the little bar is of finite thickness, then demagnetization factor

H,=H-Fe=H -F*_ 1y H=H,{1 LB “1F]

T 4n
e=*4 4; 1Hr M = @-V connection more indirect.
@=_°_H TI=@Vol F-=

1+ xF

Ponderomotive Force on Element of Current

System cannot start moving by itself. Action & reaction are equal to one another.
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i2nR

3 m = force on magnetic pole, and thus, conversely, force on current. Thus, force

on element of current = i.}%ds = {Hds.

No force in the direction of the element. General formulation. Force L toi L to H.
If no right angle between H & ds, then only the component of H perpendicular to ds
effective.

H-ids- sin o
We have to form the so-called vect. product of ds and H

“4’4 dK, =i(dy®, -dzB) dK, =di(iB - B)

If instead of air or vacuum subst with permeability u, then ponderomotive force dep. on
B. Again force = g.’fR.im but L% - B
R? R
Deprez-D’Arsonval instruments.*”
Total force on finite conductor by integration.*!

]

Work of the ponderomotive forces = increase in the number of lines of force - current
strength. Flexible circuit seeks maximum extension. In general, work on element of
current = number of the lines of force intersected. Force vector™

l1-i-®-8 =i AN.

=

l(dy g)zz —dz gy) 5x
idz9, —dx$9,) d,
l(dx 5}: - dy 5—3x) 52

Multiplied by components of displacement 8,5,8

xVyvz

This can also be arranged in the following way

yields work.

[p. 48]




[p. 49]
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i(8,dz - 8,dy) B,

This proves the theorem.

A circuit with given i seeks to orient and deform itself in such a way that the number of
lines of force it cuts becomes a maximum. Thus, the forces acting on circuits have
<potential> funct. that plays role of pot. en equal to iN, where N thus directed is
positive, like the field generated by the current.

Magnetic energy of a circuit.

1 N Ni
L =N (pa -2
T PRl = (B

Electrostatic & Electromagn. Measure of the Current Strength & Quantity of El.

In electrostatics we derived an absolute measure for the quantity of el. & potential
difference/electrostatic measure. € =4no

1 E?
TITTTITTIOY Force =¢-2f= _¢=2 =dn =
2f 81'c2f no’f nf

1 1.3 1.3
E = ___yforcef =M% i =M1
V2w
The quantity of electricity can also be measured electrodynamically as Iimdt =k

Dimension of the magnetically measured current: [ Force |
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2, _ 2i2] L
= H H,i,l = Force = R Tz

= |iz|

B~

{lm} — M1/2L1/2T—1
i L
i) T

Deprez-D’Arsonval.!*’! ]@r Bl -2nR = D = 6x equilibrium. [p. 50]

abs. measurement of quantities of electricity

0
27 d>x I|dx 2n ¢ .
=" BM=1"Z= dt = || =22 | idt
? R ? dr* I% Mldtlr RI

jidt = _I_(_i d_x
2nM|dt

From here on undamped sinusoidal oscillation according to the equation

2
MHx = -I%*
dr

x =A sin 2nt
T

2
Inserted MH, = {%2] I

dx _ 2%
dat) ., T

2
[I_] 2“/1 = EH A, where A is the maximum deflection in

fiar = Ry [L].Z H,
) T (2m) absol. angular measure.

2n ¢

According to Deprez ki =1 % initial period.
t

fids = é{%}r (1)




[p. 51]

296 DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM

d*x )

For the process thereafter ax . O Asin2nl
dr’ I
2z _ @8
—l == (2
F -7 @

ki, = @x, «O7 = susceptibility n  (3)

fiar = I, 122, T,
K
/

Thus, when the susceptibility n for the direct current is known, then quantities of electr.
can be measured abs. e.g., with Deprez. Damping can also be calc.
Then one has

2
14% . gy - R%
dr? dr

Such lin equations with const. coefficients are most conveniently treated using imaginary
quantities

e/® = cos ot +jsin of eIV = g el = ¢"(cos Wt + jsin wi)

Instead of Acos wt and Ae™*(cos wf), one inserts Ae'’, where y can be compl. The
real part of this solution is then the solution sought.

Now, again
[iar = Z{f}
x |dt),

Now, the above equation

d’x Rdx 8
+ + —x

o+ 2 0 e* solution
e Idr 1
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R ® 1 R\? R\* ©
2 = ) = —) - =
24890 (“.21) (I) :

s . R . [/® 1(RY
Let discriminant be negative A= ——+i [— —4\7

x = Ae™® sin wt solution.

Discussion of the solution. Damped oscillation {%} =Aw
t=0

Oscillation period: 2_; =

x
Damping e* = ratio;i

Calculation of the first point of reversal
. . ()
% = A{—oae "sin + we cos} = de”,/o* + w?sin(p — wt) sing = T

= 0firt =

dx [
dt o

tg — cos<p——-—--~-—0C tgp = —
IC
a gcx g o

7

-

. w
Xpas = A€ sin g, Where tg g =

X -1 dx e "sin —-lEJidt-e"sin
max. w dt =0 (P o I (P

1 [(22y¢ . ol#s]
= = Ee~ @9 gin o4  arctgp = —
w"J ( T> T ) ¢ 8974

Thus, we can measure the quantity of electricity of a current impulse absolutely by [p. 52]
electromagnetic means. We have seen earlier that the electr. quantities can be measured
absolutely by static means. Since voltages can be measured absolutely with Thomson’s
balance,*! & the capacities calculated.
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EX I |
Dimensions —=M—5  E,= MVZL3T!
L T
§ = M2L-12T1
ids i oy -1pge1
RE=]™ H=MPLTVAT
i= M1/2L+1/2T—1
E,= Jidt = M2
E, L . .
— "% experiment yielded 3-10"° = velocity of light = c.

This result led to Maxwell’s theory of light. Remark. The fact that EEi is indep. of

the experimental design justifies the assumption that i, is equal to the quantity of static

. i
electricity transported per unit time. 2 = ¢
1l

m

Unit for Voltage. Ohm’s Law

We consider a piece of conductor that is not acted upon by any
He /' electromot. forces (Expl.) The electric energy supplied to this piece
per second is p;i - p, (electrostatically) = Ap, “i,.

Effekt _ = Apei

erg Ap,, "

We have thus obtained a new absolute unit for the voltage. Calorimetrically, if no effect
other than heat is produced.

[p. 53] Practical unit constructed, which is 10® greater

10%Ap,, = Ap, 10i, =i

or.

Effect = Ap,, i, = Ap,, 10’

fi,,dt = E, Coul. unit E, = 10E,
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It turns out that for metallic & electrolytic conductors at constant temperature .1}.13 is a
i

constant; one calls it the resist w of the conductor.

Ap = iw. (Ohm’s law)
w depends on geometrical conditions and on constants characteristic of the material. For
[large] hom rod™”

w = w%m spec. resist. 1. o conductivity of the material.
®

It is possible to calculate the resist. of solid conductors if the current distr. is known.
For a linear current we have
Ap =1, .'.‘_'li (w & g are funct. of /
q

|4
P2y =apyY L -y L
wdl w,
14 q
The practical unit of resistance, the Ohm, is so defined that we get the equation
Ap, =i, -w, 10%Ap, = 10i - wpr_10“°wm =W,
Determ. of the current flow in solid conductors.

i=-a_(8-0' a<a(p)+‘+'=0

* 0x 0x 656—

P if homogen Ag =0
i On surface [--]i,cosnx +:+- =0

Mathematical problem the same as in electrostatics.

Math. Relationship between Resist. & Capacity™

i=o0 f -—a—(Pda = ¢ 4nE;
on

[p. 54]
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The capacity problem and resistance problem are, thus, identical. We give the mater.
resistance wherever electrost. cap. has been calculated.
Ohm’s Law, if electrom. forces*)

p,-p =iw, 1
p'-p,=iw, 1
p” _pl = ¢ -1

P L4

/’1 f'l

i(wl + wz)— e=p -p,
w =e +(p,-p,)

Also applicable if electromot. forces are uniformly distributed. Special case starting point

& end point coincide. Then e = iw, if w total resist. of the circuit. Resistances
connected in parallel.

i,+i2=i=Ap<_1_+i>=Ap

wyoow, w

1 1 1

woow o ow,

Kirchhoff's Laws for Current Networks

1) In junction } i = 0, because otherwise incess. accumulation of charge.
2) Any polygon considered

#,
ASS 2,

J.

Su
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301

Application to Wheatst. bridge®™

i1W1 - i3W3 = 0

i1W2 - i3W4 = 0

W, W, Wi _ W

Wy W, Wy, W,

[51]

Solid conductors only here.

[p. 5]
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Electric Induction [ force work on the path ds

il$ = Kraft
il ds = Arbeit auf dem Wege ds

Motional Field

If a circuit is displaced in a magn field, the system expends work that is equal to N,
where N is the number of the lines of force traversing the field and the lines of force
originating from the current itself are neglected. The result holds also if magnetization
constant .

[p. 56] If the field originates from magnets and the total energy of the field does not change
in the course of the displacement, then an electromagnetic force must counteract the
current, a force against which we must apply electrical work that is equal to the

ponderomotive work.
U N idN = e'idt = - eidt 6,
do S\
fe dr
/J If e is measured in practical units, then e, = —10‘851_].\[.

U dt
This is the induction law of Faraday. Since the origin of the magnetic field is
obviously not important, the law is generally valid, no matter how the field might be
produced.
Extension to the case where the magnet is in motion and the conductor at rest.
Provides a method for the determination of magnetic fields and their changes.
The current field also acts on this current itself, if the current is changed. From this

it follows that every linear current can be conceived as a bundle of linear currents.
Insofar as one can view N as defined, one has again

_dN
dt

e =

DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 303

But now one has to set N = L - i, where i is the instantaneous current strength, thus
also

dL,
T Ta
or, if L is independent of the time:
di -1 di r. 9\
= -2 100 = -L 107" £ L-107) =L
¢ Ldt . dt ( ) o

L is the coefficient of self-induction. The practical unit of self-induction is the Henry =
10° abs. The equations are then valid for pr. un. as well.
Solenoid:P’!

e T T dt

Ring analogous. If permeability u, then Ly times greater
Linear conductor through which variable current flows.

Ap +e =iw

m di

-LZ.
dt

If self-ind. the only electromot. force, then
. di
Ap =iw + L=
P dt
Conductor in zero-current state suddenly connected to potential difference.

di
dt

How does current increase? P =iw + L

+1

Al
L}

[p. 57]
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Lw = —L.;.i.; %ﬁ = -% i = const e ™),

i= _13(1 _ e—(w/L)t)
w

Time: T% =5 T= oL Practically very short time.
w

Fading away of the current analogous.
[p. 581 Sine current

. di

Ap =iw + [,

P &
Ap = A cos wt given

i =B cos (ot - ¢) ¢ is then the phase difference between voltage & current. If ¢

pos, then current lags.

. wlL
B(wcos{wt — @) — @sm(wt — @) tgo = w
wcos o sin &

Acoswt = B\/w? + w?L? cos(wt — ¢ + a)

Graphic Illustration with Rotating Vectors

A cos wt

Derivative
~-A cos wt

|
|
;
!
i
|
|
!
£
i
.
i
it
|
i
5
)
|
|
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Thus, rule for differentiation.
Rule for summing parallelogram, because projection of the resultant always sum of

projections of the components.

L
tgp = % P? = i*(w? + (wL)?)

Comes to the same as the replacement of the trigonometric funct by exp. with complex [p. 59]
arg® A cos(wt - @) is the real portion of 4@ 9 = de7%/ @, = @e/*, where &

complex = Ae7®. Thus, phase angle & amplitude known if & known.

Ap = Bei™ Ap = Pe"

i = Selot j = Jei@—®

P = Jw + joLI = I(w + joL) P = Iwe ™ + joLle™®
B Pe ¥ = I(w + joL)e’®

oo = (w + joL)
e —

; wL
/W2 + (wL)Zejarctg W
wL
= /W + (L) ¢ — ¢, =arctg—~

2|

etc.

~|

Calculation considerably simpler than with sin & cos. Therefore almost always applied
nowadays.
The calculation is simplest if by variables one immediately understands corresp. compl.

Then we get at once
Ap =i(w + joL)

i-vector to be multiplied by (w +jwL) vector in order to have Ap. Coincides with theory
of rotating vectors. Naturally, these methods are applicable only to harmonic functions.

Earth Inductor—Measurement of Self-Induction

Magnetic energy of a circuit

je'idz = —jeidt = j%idt = Lg.
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[p. 60] Remark about Ponderomotive Effects on Magnetizable Bodies
in the Field of a Current”®

dA = e idt = -eidt = N idr
dt

The bodies seek to move in such a way that N becomes a maximum. This fact forms the
basis for the measurement of small <dielectric> magnetization constants.””

Homogeneous field % in the body Hu
If column rises by 8h, then the change in the energy is

_.l_,uﬁzq 8h - i;@zq &h.
8n 8w

T

Thus force on column = ®q | = ghpg,

where 4 is the height of the rise produced by the
magnetic force.
Energy & Energy Principle

Previously: For a circuit we have

1 1 1.
E = __ dt = . dldN = _
8n %mqﬂ” 81\:J‘ﬁ ZIN

2
Since by definition N = Li, one obtains E = .l.‘zf. in agreement with the above analysis.
Application of the energy principle to current of constant intensity.

e'idt =dE + dA

CidN LGN | g

dt 2 dt
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1.dN 1.di _1.dLi) 1. di
= 4V _igd LAl e
Thus, =5 Nz v a a
If i is const., we obtain d4 = %idN = dE [p. 61]

Work is equal to the increase in energy. The expression differs from that for the work

of the current in an external magnetic field by the factor % Example. Parallel currents.

Measurement of an EMF of Short Duration. Earth Inductor™

' .
C/r%) €=iw~Lfd_f
dt

At the start i =0. Attheend i =0

fedt = wfidt - l",lilg
0

For the earth inductor ¢ = n%];[ fedt = 2Nn.

Quantity of electricity measured with ballistic instrument. Analogous method for the
investigation of hysteresis.

Interaction between Permanent Magnets & Current

N,, = circuit-traversing flux that originates from the magnet

m

N, = " " " " " " " current. L self-ind.
dA = idN_ + %iZdL

_dN, _dGL)
dt  dr

e =

Ohm’s equation
e'+e=iw




[p. 62]
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Energy principle i*wdt = —idN,, — idiL + e'idt k ejiydt = iZwdt + ; (%Llif) + M“ilfg—z«dt [p. 63]
1 ; t t
= —dA+§i2dL—id(iL)+e’idt ;

~—;-i2dL+%Ldi2
dAe = G '+' dEml + dEmz + M21i1 di2 + M12i2 dil

[59]
—dA + eidt + d<%Li2>
dA4, — G must be tot. differential. ~ Thus M,, = M,, = M.

Interaction between Two Circuits ; {

The circuits are immobile. E= E(Llif + 2Mi, i, + L,i?) must never be negative
M? M?
L, +2Mx + L,x*{M + L,x=0 L —2—++—>0
Measurement of mutual induction.

L, = flux that current 1 of strength 1 yields through its surface =27

" " " 1" " " " . o

M, = 1 boundary of cur. 2

M21 = " " g " " " " cur. 1 3)

L, = " " 2 " " " its boundary. “' %

Total flux through 1): Lyi, + My, = N, 1 — 7

v " 2) Myi, + Lyji, = N,

The equation for the two circuits is e 1
One can also resolve the magnetic field in another way.

e, - ‘E\_f_{ =iw, . ® number of lines of force traversing both circuits.
dt ‘Dl " "o oon " " " Ol'lly 1)
n " " n n " i
sz . ¢2 2).
82 - —-d— = lzwz
! Model
or
. : 2 A s AGS
. di di pAf A P
€ = 4w, +L17t1 +Almjt2
_ di, di, This resolution is especially advantageous when almost all lines of force traverse both
€ T LW, * Mlzz * Lzz circuits. How do we determ ®,, ®, & ®?

What form does the energy principle take?/”
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(0]
Yo
N, L, M, L M 1 j
nl nl nl nl n2 nl n2
@,
D) e e

Transformer, with Resist. & Leakage Neglected 1!

do
Ap1=nlgi« Ry
Lo ot/
¢ = ;v’(l1n1 + iyn,) @
Al’2="2“‘f§ s

i

\
The phase of the current depends on what is switched on. If only resist. then ‘f
[p. 64] i, phase of Ap,.

Two mobile circuits
Work el. force. Energy
i T

Py = ilwl +

dMi, dL,i,
dt + dt

p2=iw, +
, 1, , , .
dAl =§lld(Llll)+lld(M12)

4'dy = yird(Lyiy) + ipd (M)

d'A, = pyidt
d'A,; = pyiydt

1
E,= E(Llif + 2Mi i, + L,i2)

d'A,=d'G+dE, + d'A4,15%

ay, /

[ ft
. d®
pl— ldt
—n d®
P2 = 27
di,
=i L,52
P2 =W, + 277,

1, .
b = ;(11"1 + iyn,)

AN

Transformer with imaginary.® By ey, ... one immediately understands imaginary
vectors.




[p. 65]
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ey = i;(wy + joLy) + i, joM w, + joL, | joM
0=i,joM + iy(w, + joL,)| —joM —(w, + joL,)
e =i [(w, + joL,)(w, + joL,) + w*M?]
1= 14 ;
(w; + joL,)
2342 li641
=iy [Wl + joL, — LJM—*]
W, + joL,

. —(w, +joL,)(w, + joL,) — @*M?
€y =1 ;
joM

In the absence of leakage (L,L, - M, = 0),[! the second equation becomes

. ww, +jo(lw, + Lw)

7 h oM

& if, in addition, w; = 0, then e, = —i

jwl. w
The [~-] in e, =i, J o2 =i
w, +joL,

or if w, negligible compared with jwl,

Capacity
E, = C,p, If this equation is to be valid in electromagnetic units, then the unit of
capacity is fixed thereby. What is the relation between this unit and the static unit?
Em = l.ES
c
P, =cp

hence lEs =C, cp,
c

ES: @ps Cst=Cm'c2
G

The static unit is ¢* times smaller than the electromagnetic one
There is also a practical unit

|
|
|
|
|
.
o
|
|
-
|
.
|

|
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Epr = Cprppr.

10E, = G 107, En= Pn G =10°G,

Practical unit 107 of the absolute magnet. unit

This is 9 -10? electrostatic units

Practical unit (farad) 9 - 10" electrostatic units In addition, microfarad 107 of the
farad. 9 - 10 electrostatic units.

Circuit with Capacitance and Self-Induction. Electric

Oscillations
Fa~py 8 3
pc=E -E_ _c¥ _; a
dt dt
di .
- LE
P = w

differentiated once again
[ if...then..or solution; oscillation period easily realizable ]

d d. 2. . -
_p—_-_lw.;_Ld_zl:_i Wenn w=0, dann Jcoswt oder Ie/**
dt dt dt C L&
Osung.
1, di _d%
alsoEl+Wa+LE§=0 I+ (jo)* LCI =0 o =2rn= 1
CL
: di d?i t /1
PAwCq e =0 "=\ CL

w1012 1QL+61 1Q1+8]
108 10710 1078

Schwingungsdau 10™* Sek. wohl realisierbar,
1+awC+o’LC =0

ae My 1 w\?
-~ Tt e\
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[p. 661 Frequency somewhat influenced (reduced) by resistance. Amplitude decreases with

e (W=1omé&rL=1 7-1
100 = 30

We shall also discuss in particular the case of sinusoidal currents.

i
Lw ¢ pl-—p’=iw+Lzl—;
’ 1 1
A 1
=p, — —-=iw+L-l+— idt
P =D | ) dt C

. I
Solution by means of imag. i = Soe“‘”fidt = leior = b

jo jo
Inserting this, one obtains
. 3 1 1
= L+ —)=i j _
p l<w + Jjo +jcoC) I<W +]<wL cuC)) s &
W “e
1 e
e Ui“z
7/“‘{7.; 2
1

113)\? .
= 2 L_'—“ 4 T e
B 3\/W +<w coC> e tg o =
Ifi = Icos wt

p=1/ cos(wt + ¢)

P

1 2
\/wz + (wL - ——>
wc

Ampl. I =

Resonance when I maximum e = _1_ proper oscillations. For the latter, I becomes
cL

infinite when w = 0 at given voltage. Capacity compensates self-ind. But only for

specif. perm. With very weak terminal voltage considerable current.
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1.
When there is resonance, voltage on the condenser _éfzdt =p' -p, = Ep;cos.[“] [p. 67]

May become enormously large if C small & W small.

Energy Principle in Oscillations

p=iw+L£i~l

i idt

pidt = i*wdt + d(I—‘iZ)

2
! dp
d({ p?
If w= e+ i) =
w=0 7 (c 5 + 5 ) 0
The to-and-fro oscillation of energy p2 El'ﬁ
¢

Pm = i,,,\/E If L =102 Henry

C = 1078 Farad

P = 10%i,

Comparison of capacitiest®

ey,
w_._..___
P1__W1_ ! wCy

D2 szt o1
w2 JWC2

From this the relationship (independent of period).
Rapid oscillations if L small. Not coils but simple wires.

Back-and-forth loop™”




[p. 68]
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Thus, all in all
2

D
2+ 21gR1R2
D2
2lgR R

122 ,{(m --‘

too large

too small *

1+2lg

R(R, D ]

2
L=l[1+21gD
R

"2

If we introduce the total length [’ = 2/, & set R, = R,, then
L= [l + 21g2]
2 R

We obtain the approximate value of L for a square.

1 s l: [70]
L =2 [_ + lg_] =2 |1g= - 1.13)
4 R R

1ot
bR

Is too large, because field calculated too large. In reality, according to rigorous

calculation™ L =2/ [lg% - 1.9}.

For circle the same formula but -1.5.

Waves in a Wire (Distributed Capacity)

¢ = capacity per unit length.
p pot. e el. quant. " " " {current str.
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gi _ Op - . .
-——=c-%Z  (continuity equation for electricity
ox ot

] 72]
L A P
ot x ot
These are differential equations for i & p.
p eliminated
oi % _ 9%
cw— +tcl— =

ot ar  ad
p can then be determined from the first equation. If w neglected, then
cl ?.21_ = _ajl_ i = fi(x - V¥) is solution
ot o’

cdl? =1
y-_L

ycl

Two parallel wires whose radius is negligible compared with the distance between [p. 69]

them™!

D

1=21g2

'R
cap=—1 .
D ¢&

21g2

ER

V = ¢ Such electric waves propagate with the speed of light. For other ¢ & [ different
results.

W not neglected.  long wire. Sinusoidal solution. Influence of € & p.
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P = Xelot ‘;‘ . 4ni = [ B ds can then no longer be valid for arbitrary
P=ae T /j“"‘“ surfaces. The law can therefore be strictly maintained
(joew — 02c)X = X" X = Ae*™* <= M only for surface elements
92 = —w?cl + jocw V(@2 + (wew)> = W 0%, 0%
4rj, = — — 2
y =/ | . Jx =3y T oz
oy

The solution is

i = Aej“”e('Aj'B)x

is therefore surely more exact than the above law in integral form if the currents in

= e Brgolt-Wo)3) w velocity ~ question are not constant.
4 . | 2) Open currents
B = damping constant. Conductor interrupted by a dielectric of arbitrary dielectric constant.
| Condenser. There also seem to be exceptions to 4ni = [ B ds for slow
. w ; i , currents if one places the surface across the intervening space. This
A = current amplitude at start. tge = o . would apply to any intervening space, no matter how narrow. But we can
- % | maintain the law in general if we assume that the temporal change of the
| r dielectric associated with the current acts magnetically like a conduction
W = ocyw?+&’? e.o 1 W = x/((.>2cl)2+((.)cw)2 | ; . Y
A \/;; el | current. |
( n= E
B =W sin(_zp | 1 ]
. E = do = — | Ddo
J T
|
A=W cos? | i=51£=i dbnda
2 dt 4m) dt
Damping coefficient B« wy/cl A EJ? From this, telephone transmission range. We assume that the right side is equivalent to a current. The X-component of this [p. 71]
20 241 | vector:
Pupin’s system."! | Extreme w » wl.
‘ 10D,
[p. 70] Maxwell’s Equations 4n ot

1) We have reason to assume finite propagation. Conduction with distributed capacity.
Acts like the x-component of a current density (displacement current) Conduction
current & displacement current can be present together.

. 10D
Jx t in —bt—k = X component of the total current).
T
If one corrects the above differential equations in this manner, one obtains
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T Ty e ) b0y o
_ e
dmi 0Dy 08, 09, ani 2 42 | ety ?_?_y_ _______
bt T A, T ax in vector not. 7tj+71?—cur $ t
oD, 0%, O%. Tty T
4rj, + 99 05
ot 0x oy - P 1
2z (e, ¢+ =2 )
2y
Besides this electromotive field we also have an electric field €€, This has been taken
These equations are joined by a fourth one, that of Gauss’s theorem over from electrostatics. We shall therefore call it €, etc. The following equations hold

for it

4nE = JZD,, do <P 0= o€, O0€,
T 0y 0z

Plane waves.

This holds first of all for closed circuits. If we think of the EMF as a line integral of an
2 LetB=ub & B =e¢ &letu & ¢ be indep. of the location. Then the

EMTF field ¢, then the law takes the form

equations read:
L

0D, 0D, D T
it g z drp =divd
o= T oy Tz P
Electromotive & electrostatic field are both def. by the force exerted on the el. unit. We [p. 73]
L. dp %, 9, 9, o Y have therefore no reason a priori to consider them as being of different nature. The
If one bears in mind that 5% 13T E M- ~div j, then one has 4 divj + % formal laws also require that the sum ¢, + €, ... be considered simply as the elec. field
(div B) = 0. str. €, ... For if one adds these equations, one obt. [ or ]
But this equation is contained in the ones above, as one can see by differentiating with :
respect to x,y,z and adding. 0B, 0€, '0€,
As usual, it is assumed that j and B are determined by € . The simplest hypothesis is : ot oy T oz
]x = oex ;Bx = eﬁx a%
................................ or ——— =curl €.
_______________ ot
However, the relation can be a more complicated one. L.
fp. 721 3) This was the law that defined the magnetic fields determined by electric currents. We
have also become acquainted with a law for the production of electromotive effects by
the alteration of magnetic fields. o (0B
These equations give *4+-4-]=0. Thus, they are compatible with the
- 9N at \ ox
ot condition div#B =0 (There is no real magnetism).
|
l
|

__d We are looking for waves propagating in the X-direction. Everything dep.
eds _I%ndo
dt E—— only on x & t. Let <F(x - vt)> be the dependence of all components
Because of the finite propagation velocity of electric effects, this law, too, will only |
hold for « small surface elements. We apply it to the following surface. .
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| o (09, 09 o (06, 06, o€
BO9Hy e 0€, E..-<_’__y>=.._._~(~_x Xy z
— =0 o cot\dy 0Oz 0x 6x+6y+62 + A€,
udH, o€, cdE, _ 99, ; E%
cdt  0x c ot  0x ¢ o
‘ £ 0%€
uoy, 06,/ e0€ _09, o — A€ = O.cte
c ot  0x c ot 0x
These are the fundamental equations of the wave theory.
If at one loc‘ation B, = QE’,‘ = 0 initially, then it will also be so in the future The Energy Principle and the Law of Conservation of Momentum
Diagonal pairs mutually independent. ~
H agx . a@z 66}’ — fjx
_Rk09, 05, 9 c ot Oy oz “an
c ot  Ox ox 92€, e d%C, 0
A | wos, o6, k. | 5 | &
€, _ 0% | _KO c ot oz bx “4n | 4n
c Ot ox c Ot S
_nop, o€, o€ | 5 | &
€, =Fx—v) H.=aFx— vt) ~ c ot o0x dy 4r 4r
c c ;
V= Ea——Ty:‘{y 47U.x+§a_®£=aﬁz__@_y €.
el ¢ Jeu ; ¢ ot Oy 0z 4n
_ [ e0G, 09, 05, | € | 9
\/u | Wt owm T o ox | ‘an |
[p. 74] In the case of vacuumv =¢ B, = €, 4rj, + _8_0_;31 = %Sj_y — 665" c% __?X
For a dielectric B,y = Qﬁy\/.e_ , further v = < ¢ ot X y T m
Ve 2 ' ) c (o {751
For light waves u =1 v = % = £ n = /e holds for the majority of simple gases t +c@€,j, + €y + )= T an {g(@ygz —€.9,) + + }
e ;

and for some liquids. In general, more complicated relations because the connection
between B and € not so simple. On the generation of electric waves later on.
General differential equation of wave propagation in transparent media

Is canceled by what comes from the right-hand side of the second system.

c 0 c 09 09
9 _ g P _g
po9, 0€, o€, | @ *aman &9~ &5 +47r< Y ox =ax>
Tc ot 0z ox 7 = S
wd, 9, 6, | 3 s eeeeesenenoooeeeeee
c ot 0x 0y oy




[p. 75]
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Vector of the energy flow 4%(@@: -¢B)

éé‘ + heat loss = ISn°do.
dt

Thus, the energy principle has been satisfied, with the expression for the energy being the
same as in electrostatics.
The law of conservation of momentum,; radiation pressure.

Law of the equality of action & reaction Y X =0

From this ¥} 5o lete syst
1S m, —— = or complete system.
om Ydr plete sy dt

dx,
If external forces _E m— = 3y X,

Can the momentum of a system be increased by internal electrom. processes (Can a
system start moving by itself?) We must calculate the sum of the ponderomotive forces
acting on the system. Per unit volume

. . 1 o€,
]ygz _]zssy - 471?0{ 5 5;’} 87[ ax(gy + 52)
L 0% 09\ 1 092
PR KA ST S (G AL + )4 L%

59,
Ox

1 {09, 9 1 0 o 2
_ 1%y 09 ) P S
4nc{6t(§z o Y} gax o TG { }
2
6y LD

8n Ox

|
|
|
|
|
]
|
|
|
|
|
i
|
;
!
|
|
|
|
E
|
!
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0
gxp +.jy$jz “jzgy a_(l' <—%52 + 532c> + %(ﬁxgy) + 'a’é(ﬁxgz)

o)1
- "'a {%(@ysjz - (gzgy)} + i _1@2 + GJZC) +
ox\ 2

+1
4r

integrated over the whole system

0 0

i3, @
Fra atf €9, — @5)

~
Iy

3, + 3, = konst.

If we call §, the momentum of the electromagnetic field, then this tells us that the sum
of the mechanical and the electromagnetic momentum in a complete system is constant.
Application to a plane wave | x-axis 2

Electric force in Y-direction.

1 1
Ji-1=1 = %(@i +92) = EEl

Momentum that impinges on the surface / per unit time = Z This is equal to
c

(Ey:::gz (3

radiation pressure.

Terms that were canceled out in integration. Maxwell stresses. The momentum
transmitted by them to a unit of volume per unit time = momentum transm. to mech.
system + increase of momentum in the element,

1 0€ 109
Ea_curlﬁ—zﬁ-cuﬂ(g

0%, 09,
0z Ox

[p. 76]
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Ip. 77] Hertz’s Oscillator™)
2 oy oy
gxz— T X
l y dp p
0
$, = % o _x
YT ox op p y
, . <1>a(€3x o2 0 0*F OF 0
Z G — =y
¢/ 8t  0xdz ot oxoz ot
INOG, _ 0%y _
c t ~6y62_ T
1\ o€, _ﬂ_az'/’ 177
¢/ ot oyr 82
_0%F 19%F
*= 5507 x=zayat F depends only on
_OF _ 10°F %’f-_:‘fi_F.f
Y dyoz YT e oxot X rr
2 2 2 2\{78
¢ _ _OF_OF %_f;%gx_ﬁfif(l x_2>”
ALy 5 o2 X e or dr\r r
2
9°F 1 8%F ap=4F 29F éi(rzﬁ)
=a_zz’_27 572 dr r dr d dr
Here _l,azF_AF
ez o
10°F 1d( ,dF
2o - rZa\" @
SolutionF:lf(t_i 6F === 1
r 2 5 c
1143 11, L=1f ;f+ !
Zrar T gl aed
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Behavior in immediate vicinity of the oscillator. . 8—
& &
e 1_r_ T
(?f rr v r 0z
0 r +& ~ .
€= e Q= — L Pot. of a dipole e+ el f is the moment
0z 0z —¢ 67 of the dipole
- g=f
0z

Thus, process oscillation of dipole, which is « small compared with the wave length.

Calculation of the energy radiated outwards.™

Xz R,
@xsz g)x"’ 62r3f 22x2
2,,2 r-—2z°r
X zcy
G.:«y=—')2]—23 5y=‘czr3f 5
c*r ) 4
=222+t | 'T<1";7>
x*+y s
— =0
€ = p f 9.
1oz 29 g|80
ELS C&HLxyz I@I=Efsm 3 =19l

Rad[iation of?] energy™"

J Jl(ﬁlls:)erdQ - _!‘Ifj?dtfsinz&ldw
T ¢ g 2msin 9d9

27tf (1 — cos? §)sin $d3
0

cos3 9|”
3

4
3

—cos 3 +

2
_2_§=

[

In unit time Zc_ 2m3

_2
T 3c* F

If excitory sines®? f = focos(21mt), then f = f,(2nn)*cos( )
P = Sfemn)

1
A= 33 (27”1)4f o2

[=100 ppux=3 C=30 n=10%
fo = 10* 2nn = 6 108
35 1()8

A= 10°710 ~ 10!! = 2000 cal. per sec.

3-27-10%°

[p. 78]
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